SOURCE CODE PLAGIARISM DETECTION
FOR PHP LANGUAGE

Richard Vsiansky', Dita Dlabolova!, Tom&s Foltynek!

<ll"

EUROPEAN JOURNAL
OF BUSINESS SCIENCE
AND TECHNOLOGY

1 Mendel University in Brno, Czech Republic

Volume 3 Issue 2
ISSN 2336-6494
www.ejobsat.com

ABSTRACT

This paper introduces a system for detection of plagiarism in source codes written in the PHP
computer language, part of the plagiarism detection tool Anton. We used the greedy string tiling
algorithm together with tokenization and hash calculation. The efficiency of the system was tested
on both an artificial dataset and on real data coming from a course taught at our university. Our
results are compared with other similar systems and solutions, concluding that Anton can detect

all examined types of plagiarism with higher accuracy than other systems.

KEY WORDS

source-code plagiarism, anti-plagiarism system, PHP, Anton

JEL CODES

C88, 123

1 INTRODUCTION

Since 1990s, academic integrity has become
a central preoccupation for all stakeholders
in higher education (Bretag, 2015). In earlier
stages of this period, universities focused mainly
on plagiarism. Even as the scope has become
broader, plagiarism remains one of the most
important academic integrity issues appearing
in student assignments undertaken individually
or in groups, without direct supervision. In the
digital era, massive amounts of information are
available to reuse for anyone struggling with an

assignment who is tempted to plagiarise (Flores
et al., 2011).

Student writers are typically advised to build
on the ideas of the authors they have read
and to incorporate the material in one of
three ways: paraphrase, summary or quotation
(Jamieson, 2015). In programming assignments,
of course students should make use of the work
of the others as well. However, the methods for
doing so are completely different. Students are
advised to use standard libraries and standard

VSIANSKY, Richard, DLABOLOVA, Dita, and FOLTYNEK, Tom&s. 2017. Source Code Plagiarism Detection
for PHP Language. European Journal of Business Science and Technology, 3 (2): 106-117. ISSN 2336-6494,

DOI http://dx.doi.org/10.11118/ejobsat.v3i2.100.

Source Code Plagiarism Detection for PHP Language
(=) S (=)

107

algorithms. On the other hand, these algorithms
are often required to be coded by students and
not simply downloaded from the internet.

Parker and Hamblen (1989, p. 94) define
plagiarism in source code, namely a plagia-
rised program, as: “a program which has
been produced from another program with a
small number of routine transformations”. The
definition differs from “standard” definition of
plagiarism, where the fact that someone else’s
work is presented as author’s own is substantial.
Unlike natural text, source code has its given
precise structure with many possibilities of
small changes (the above mentioned routine
transformations) which may — without actual
knowledge of what the source code is about
— change the text completely and hide any
plagiarism.

There are several common ways of changing
source code in order to hide plagiarism (Clough,
2000). Joy and Luck (1999) distinguish two
basic types: lexical changes and structural
changes. Mirza and Joy (2015) enumerate fol-
lowing categories of changes: in comments, in
identifiers, in declarations, added (extra) con-
tent of different kind, changes in the structure
of selection statements, and in decision logic.

Joy et al. (2011) investigated students’ pla-
giarism in source codes, focusing on understand-
ing and reasons through a survey performed
on 18 universities in United Kingdom. Their
findings suggest that even if 94% of the students
participating in the survey understand that
copying the source code from somewhere else is
plagiarism, they fail to understand other types
of plagiarism such as self-plagiarism, collusion
with peers or conversion of the code from
different programming language.

In natural text, not every similarity can be
considered plagiarism and not every plagiarism
can be considered as an academic integrity
breach (Bretag, 2015). Analogically, not every
similarity in source code constitutes plagia-

rism. Krpec (2015) enumerates some legitimate
causes of similarities: properly referenced third-
party source code, automatically generated
code, commonly used identifiers, commonly
known algorithms. For these reasons, simple
text based comparison tools that do not con-
sider the special features of source code are
likely to produce many false positives while
failing to detect plagiarism that has been
intentionally obfuscated.

The system discussed in this paper is called
Anton, which is an abbreviation of “anti-
plagiarism online”, and was originally devel-
oped at Faculty of Business and Economics,
Mendel University in Brno (MENDELU),
Czech Republic as a university’s own so-
lution for detecting similarities in natural
text documents, namely final theses (Foltynek
et al., 2009). It was used as an integral
part of University Information System (UIS,
https://is.mendelu.cz) for checking final
theses from 2009 to 2014. In 2014 it was
replaced by the Czech national system “The-
ses” (www.theses.cz). In 2015 Anton was
re-launched as a standalone online tool (at
https://anton.mendelu.cz) mainly for exper-
imental purpose including its further devel-
opment and growth (Vsiansky and Dlabolové,
2016). In 2017 new functionality for detection
similarities in PHP source codes was added to
the system (Vsiansky, 2017). The examination
of this functionality and its efficiency will be
discussed in this paper.

The PHP language was chosen as the one that
would be implemented in Anton as the language
that is used in teaching of different computer
science courses at MENDELU — primarily in
the course ‘Application Software Programes’
(ASP). In this course students write their
projects in this language, so there was a need
for teachers to be able to check the projects and
find possible instances of plagiarism or copying
from colleagues (Vsiansky, 2017).

108

Richard Vsiansky, Dita Dlabolova and Tomé&s Foltynek

2 THEORETICAL FRAMEWORK

Literature and researchers describe multiple
approaches for detecting similarities or plagia-
rism in source codes. The approaches can be
divided in two main groups — feature compar-
ison and structure comparison (Prechelt et al.,
2000; Arwin and Tahaghoghi, 2006). Feature
comparison is based on a certain software
metric (e.g. number of comment lines or number
of some particular kind of tokens), structure
comparison is based on the similarity of the
structure of the investigated source codes —
source codes are parsed to tokens and the tokens
are compared (Arwin and Tahaghoghi, 2006).
Another approach which can help to recognize
plagiarism in source codes and also to identify
the author of the source code is analysis of the
coding style (Mirza and Joy, 2015).

Detailed comparison of systems for the de-
tection of plagiarism in source codes can be
found e.g. in (Lancaster and Culwin, 2004).
In the following paragraphs, selected systems
which enable users to compare (at least partly
or roughly) source codes written in the PHP
language are briefly described.

The MOSS system (Measure of Software
Similarity) supports several programming lan-
guages, some of which are related to PHP,
but does not support PHP. It uses structural
comparisons, namely the so-called winnowing
method described in the paper “Winnowing”
(Schleimer et al., 2003). It is free for non-
commercial use as a web service (MOSS, 2017)
and it belongs among popular tools (Lancaster
and Culwin, 2004).

JPlag is another program that supports
several programming languages and text in
natural language, but also excludes PHP. It
uses structure comparison, it is offered for free
(until recent time as a free web service), and
is licensed under GNU General Public License
(jPlag, 2017; Prechelt et al., 2000). Its main
advantages are reliability and support of the
main programming languages, which make it
one of the most popular tools both among
teachers of programming at MENDELU and
among experts (Lancaster and Culwin, 2004).

Sherlock is an open source system developed
at University of Warwick that checks similar-
ities in source-codes (procedural and object-
oriented languages with optimizations for Java)
and in text in natural language (Joy, 2014).
The system itself does not have a graphical
user interface (GUI, see Sherlock, 2017), but it
is incorporated in the University of Warwick’s
online submission system BOSS, which provides
it the GUI (Joy, 2014). It uses its own algorithm
for structure comparison. According to the au-
thors, the accuracy of the results is comparable
with other systems, but Sherlock provides the
results in significantly shorter time (Joy and
Luck, 1999; Mozgovoy et al., 2005).

Checksims is an open source system devel-
oped at Worcester Polytechnic Institute. Ac-
cording to Lauer (2015) and Checksims (2015)
it was under active development until 2015. It is
not constrained for use over a specific language
or group of languages. It works with any
programming language, the primary algorithm
used for the detection of similarities is Smith-
Waterman algorithm. The authors compared
Checksims with MOSS and claim that the
system has the same success as MOSS within
large collections of source codes and that it
was even more successful with small collections
(Heon and Murvihill, 2015).

The PHP plagiarism recognizer implemented
at the Faculty of Information technologies, Brno
University of Technology uses Halstead metrics
and the Levenshtein algorithm applied to JSON
object for first check. Suspicious pairs are then
examined more carefully by document finger-
print using the winnowing algorithm and an
abstract syntax tree comparison using Sasha’s
algorithm. Details about the results are not
provided, authors just admit that their “results
are not totally accurate every time yet” and rely
on users’ judgement (Krpec, 2015).

Moussiades and Vakali (2005) describe their
solution named PDetect which is mainly in-
tended for bulk processing of source codes
and searches groups (clusters) of similar parts
of source code. The system was tested on
C++, but its authors claim that keywords for

Source Code Plagiarism Detection for PHP Language
(=) S (=)

109

any programming language can be added for
adaptation to any programming language.
Cross-language plagiarism detection is dis-
cussed in paper “Towards the detection of cross-
language source code reuse” (Flores et al., 2011)
whose authors found that methods applied for
natural text (specifically n-gram comparison)

work for Java, C and Python too. The other
method might be comparison of an intermediate
code produced by a special compiler suite. This
method is in fact a monolingual comparison,
but depends on existence of compilers for
different languages producing comparable inter-
mediate code (Arwin and Tahaghoghi, 2006).

3 METHODOLOGY AND DATA

Before the implementation of the new module,
an analysis of the current university solution
and requirements for a new solution was per-
formed. Lecturers in the course ASP used only
a text-based recognition in jPlag. This solution
does not support PHP language natively, hence
it is inappropriate to be used for recognition of
similarities in PHP source codes.

In its initial phase the Anton system used
only text-based methods to detect similarities
in documents of different text formats. Using
this method, documents are processed through
four phases. First, the documents are converted
to plain text. This means that all information
which does not constitute the content itself
is deleted. The second phase reduces the text
further, e.g. deleting all words shorter than
three characters, stop words, numbers, etc. The
third phase makes hashes from the remaining
words and lastly, in the fourth phase the system
compares all hashes and calculates the final
results (Florycek, 2015).

For comparison of PHP source codes and
source codes in general, text-based methods
are unsuitable. As it was mentioned earlier,
there are many transformations of a source code
which could lead to a different text form. These
transformations can be made easily (e.g. to
change names of variables, add comments, swap
cycles, etc). Text based methods cannot detect
these transformations. Therefore, methods de-
veloped specifically for source code plagiarism
detection need to be used.

The Greedy string tiling algorithm (Prechelt
et al., 2000) with tokenization (Murao and
Ohno, 2010) can be used to compare PHP
source codes in the system Anton (Vsiansky,
2017), which is briefly described below. Firstly,

the source code is transformed to a sequence of
tokens with tokens being the smallest semantic
element of a source code (Shao, 2015). These
tokens, then, represent a structure of the
document. PHP includes its own tokenizer,
which can be used via function token_ get all
(The PHP Group, 2017) which transforms the
code to a sequence of numbers. In addition, the
function can record also content of the tokens
and their position in the document (Vsiansky,
2017).

The sequences of tokens are compared by
Greedy string tiling in the next step. This
algorithm, which is also used in jPlag, firstly
takes the sequences from a document contain-
ing source code (document A) and compares
them to sequences from the second document
(document B). If they match, the another pair
is compared. All results are recorded and all
matched tokens are marked, which means they
don’t have to be compared anymore.

If the pair does not match, the system
continues and compares all other possible
combinations of both documents. All matches
must meet the minimum threshold and specified
length, otherwise the match is not recorded. A
longer length provides more accurate results,
but it can neglect smaller changes in documents.
The length also depends on the structure of
the programming language and purpose of the
document. With more complex projects and
documents, the length can be increased. For
purpose of this study the length of seven tokens
has been chosen as most appropriate to students
in beginner ‘Application Software Programes’
classes, because students in beginner classes
tend to use less complicated codes.

110 Richard Vsiansky, Dita Dlabolova and Tomé&s Foltynek

PHP file
include("template.php");
$tplvVars["vars"] =
$stmt->fetchAll();
text-based

recognition

original
Database metadata. upload to Anton document (A) .

tokenizer

metadata 323 320 323 original document

~file features "1 320366319 | tokens document
320 320

comparison
results file A<>file X +——tokens documents

Fig. 1: Processing of a file with source in Anton

GREEDY STRING TILING IN ANTON

Takes the first unmarked token from the shorter document

Compares it with the first unmarked token from the other
document

If they matches, it compares the next pair
Otherwise if the match is longer than a minimum length, it marks matched tokens

the match is marked/not marked (because of rules)

'

Takes next unmarked token from the first document and another unmarked token
from the second document

all unmarked tokens combination are compared

!

Writes results into a database

Fig. 2: Greedy String Algorithm in Anton

Source Code Plagiarism Detection for PHP Language 111
(=) S (=)

For comparison of source code, the text-based
method is also used. However, it only com-
pares all strings from the document (Vsiansky,
2017). In this manner, a user can recognize
similarities among names of functions, etc. E.g.
if a student just translates the names to a
different natural language, like translated Czech
names of functions to English, it is recognizable,
as the structure and meaning are visibly the
same. Some basic features of the document
are recorded too. In the current iteration, the
system saves counts of lines, strings, tokens,
comments and whitespaces but this list can
be adjusted in the future to include many
different characteristics that can point to a
specific writing style of particular student.

For implementation of the system, PHP
language was used. The main reason was the
availability of the above-mentioned native PHP
tokenizer and the fact that the rest of the
system Anton is written in PHP as well.

The module for detection of similarities in
PHP source codes was implemented as a part
of the current Anton system available online.
Before uploading a file, users select whether
they intend to work with natural language texts
or with the source codes.

The implementation is divided into several
parts. The first part is a decoder. In this
part, all new uploaded documents are inserted
into a function, which creates tokens from
the documents and inserts them into a new
file on the file system. This function called
getTokensPHP uses a parser file. This file is
another part of the implementation, it contains
the tokenizer of PHP and it produces results
in a correct format. The format is designed
specifically to contain all tokens information in
one array in a given order. A developer can add
a new parser of a different language using a new
function containing a tokenizer of the language
with the appropriate output.

The last part is the comparison. The system
compares all not-compared documents from
one course directory (defined before uploading
documents) with each other. The function
’stringTiling’ is used, unmarking all tokens in
both documents, i.e. leaving all tokens are
marked with a number zero. Then, according

to the algorithm, all unmarked tokens are
tested and if they match, they are marked
(with number one). This function is using the
minimal length of non-overlapping matches (the
threshold) which was set previously. The results
are saved in the database.

The current MySQL database was used to
record the results. One of the most important
tables is tokens pos, which records a position
of a token sequence across two documents with
lengths and line position specifically according
to each document. Data stored in this table then
allows Anton to show similarities in graphical
form. Percentages of similarities are stored in
two separate tables. One of them contains a
similarity ratio from the point of view of one
particular document; the second one contains
similarity of two documents. The second index
shows similarity emphasizing common length,
whereas the first result could be distorted by
different lengths.

Our test data were acquired in two different
ways. The first dataset consists of a set of
real students’ works in a course “Application
Software Programmes” (ASP), where students
learn basics of PHP language taught by mem-
bers of the Faculty of Business and Economics,
MENDELU. Overall, 66 files of student projects
were collected. From all these files, the segments
written in other languages such as CSS and
HTML were removed. These data were chosen
because the projects have been written in clear
form of PHP without use of any frameworks or
libraries.

The second dataset consisted of 7 files was
created specifically for testing the system. Each
of the created files represented a different
method of source code plagiarism:

e The first file was a basic file with a solution
for the task of creating a profile page of a
user obtained from the author’s university
project which was elaborated in ASP, (the
same project as in the first dataset).

e The second file was a modified version of the
first one with changed identifiers and added
comments.

e The third file was made of 50% of the first
file with the second half composed of a
file originating from a completely different

112

Richard Vsiansky, Dita Dlabolova and Tomé&s Foltynek

project. This procedure was chosen because
the file should be structured as a normal
PHP file code. Only the first half should be
matched with other files in comparison.

e The fourth file was a new file with no
connection to the previous files.

e The fifth was a combination of the third and
the fourth file.

e The sixth file was the same as the first one
with swapped halves.

4 RESULTS

e The last file was a file containing solution
of the same task but had been created by
another student.

By using these different types of files, files it
was possible to determine how well the system
was able to handle different phenomena includ-
ing changing identifiers, packaging functions,
replacing parts of a code, adding and deleting
comments. It was also possible to observe the
results of situations in which two projects from
different students working on the same task are
combined.

The similarity detection module in Anton is
in the first place intended for teachers of
basics of programming in the PHP language,
who expect their students to submit individual
assignments. Having tens of the source code
documents with the solutions from the students,
the user (teacher) wants to be sure that the
students did not copy from each other. After
uploading all the assignments, Anton reports
the similarities among the documents. Since the
PHP language has quite limited vocabulary,
the teacher with regards to complexity of
the assignments expects some natural matches
among the documents, nevertheless the matches
which are above the expected threshold (e.g.
above 25%) are suspicious. Anton enables vi-
sualisation of the matches in the suspicious
documents (example can be seen at the Figure
3) to help the teacher to decide whether the
match is plagiarism or not. The final decision
about plagiarism is up to the teacher; anyway
the aim of Anton is to provide the teacher the
best possible support.

The first round of testing of problem solutions
was performed on the artificial data prepared
specially for this purpose which are described
above. The results are displayed in Tab. 1. This
table shows the expected results based on the
previous knowledge of the particular data and
the results provided by Anton.

The results showed promise for the utility
of the system. They did not contain any

false-negative results (i.e. all similarities were
revealed).

The test case A shows that the system is
resistant to one of the most prevalent form of
plagiarism — renaming variables and identifiers,
or adding comments. The system also identified
the identical parts of the code as it is visible
from the test results B-E. From the graphical
representation of the matches, it can be seen
that the system correctly identified the same
parts. This proves that the system is resistant to
swapping larger parts of codes. The resistance
to swapping smaller pieces of code depends on
the settings of the minimal length of match (i.e.
number of tokens), which needs to be set care-
fully because low threshold would cause report-
ing of coincidental matches. The coincidental
matches — i.e. false-positive results are visible
in the cases F and G. There were similarities
discovered even in source codes which were not
supposed to be similar at all. The reason for
this is the simplicity of the PHP dictionary and
the tokenizer which incorporates only limited
amount of types of tokens. Dictionaries of all
programming languages are less complex than
those of natural languages: programmers use
only a few keywords whereas natural languages
have thousands of words). Source codes can
contain different functions and variables with
the same structure. While PHP source codes
can contain different functions and variables
within the same structure, the functions appear
identical to the tokenizer, which does not take

Source Code Plagiarism Detection for PHP Language

‘

3

$stmt = $db->prepare("SELECT * FROM typy_vztahu JOIN (
SELECT * FROM osoby JOIN (SELECT * from vztahy JOIN

where id_osobyZ = :id) as
ON id_osoby = id_osobyl) as neco3
USING (id_typy_vztahu)");
$stmt->bindValue(”:id",$_POST["id"1);
$stmt-vexecute();

[e
T T T T
55 555 55
A]
Wow oW ow oy
Wom S s 0o

>

Line 32:
Line 33:
Line 34:
Line 35: ¥
Line 36:
Line 37:
Line 38: ¥

Line 39: b | |

class Honda extends Auto {
public function vratType(){
parent: ;vratType();

function vypoctiSpotrebu($km){
echo $this->hp * $km ;

Fig. 3: Example of a screen with a result of comparison of two documents

Tab. 1: Test results over artificial test data

Test case The compared file Same data Expected match Real match

Modification

A 1 2 100%

B 1 3 50%

C 5 3 50%

D 5 4 50%

E 1 6 100%

F 7 1,2 Two different
files

G 4 1,2, 7 0%

Identifiers, functions and variables

100.00% were changed, extra comments
59.40% Identical half
49.20% Identical half
69.80% Identical half
100.00% Switched halves of the code
55.94% Coincidental sirl?ilarity in two works
on the same assignment
20.62%
20.62% Two different files
17.01%

into account the effect of context. In this case,
the user must take care to define a minimum
match length that will exclude most false pos-
itive results, while retaining sufficient accuracy
to find significant similarities. In the future,
Anton could be used with more complicated
languages where it would have greater accuracy.
Better functionality could also be achieved
by developing a tokenizer with the ability to
recognize context (e.g. it could divide functions
according their return types, position etc.).
These are issues for further development.

In terms of the dataset of the ‘Application
Software Programmes’ course, the results are
less meaningful, because they cannot be com-
pared to expected outcomes. However, a few
observations can be noted. The module can

find and identify 100% plagiarism, whereas
currently used jPlag finds only 96% similarity
across same files. This difference is caused by
configuration of jPlag, which examines words
only with some minimal length, to allow for
the fact that many files have a high degree
of similarity because students are using same
learned functions, algorithms and techniques.
This allowance is also made because in this
course, the codes are not very complex, as
students have just started to learn how to
write a PHP code. Users should take care
to set appropriate thresholds for recognition
and observe all similarities personally to de-
cide what size words may, when duplicated,
constitute plagiarism. The graphical overview
of similarities should make this decision easier.

Richard Vsiansky, Dita Dlabolova and Tomé&s Foltynek

Users can see which parts of the code match
with which part from the other document,
they can also see the results of comparison
(percentage of similarity). The system also

5 DISCUSSION

shows the text-based similarities between files’
strings for better understanding of the code
contents (see Fig. 3).

The issue of searching for plagiarism in source
code is often discussed in the academic environ-
ment, where educators must address possible
academic integrity breaches of their students.
A variety of systems are available for revealing
similarities in source codes with MOSS and
jPlag among the most popular among spe-
cialists over the world (MOSS, 2017; jPlag,
2017; Lancaster and Culwin, 2004), but they
do not support all programming languages (e.g.
the PHP, which is needed in the program-
ming courses at Mendel University in Brno)
and do not meet the needs of all teacher.
For this reason, many educational institutions
develop their own solutions — University of War-
wick’s system, Sherlock (Joy, 2014); Worces-
ter Polytechnic Institute’s system, Checksims
(Heon and Murvihill, 2015); Brno University
of Technology’s system, (Krpec, 2015); and
MENDELU’s system Anton which is discussed
in this paper.

Anton was tested on two sets of test data.
One set consists of artificial data made directly
for the testing purpose. Results were satis-
factory — the system detected all similarities,
however there were a significant number of
false-positive matches caused mainly by the
nature of the testing data and of the PHP
language itself. The high match in the case F
depicted in the Tab. 1 was also caused by the
fact that the tested source codes were school
assignments — the assignment was the same for
both source code, it was rather uncomplicated
and both authors used similar approach that
they learned at school.

This is certainly an issue for further devel-
opment as 20% rate of false positives would
discourage teachers from using the system.
Because the system was designed primarily to
detect deliberately obfuscated plagiarism a high
false positive ratio is predictable. Moreover,

false positives are more likely in programming
language than in a natural language due to
limited vocabulary and due to general recom-
mendation to reuse source code. For example, in
PHP, there are only 135 possible tokens which
naturally lead to false positives. This can be
addressed by using a filter set to hide matches
below 20, 25 or even 30 per cent so user is
not confused. On the other hand, small changes
remain undetected, which should not be critical
problem. Setting the correct threshold will be
considered as soon as the system is used more
widely.

The other set of data tested here are ‘real’
data from students — a set of 66 assignments
from a course taught at MENDELU. Anton
provided better results using these data than
jPlag which had been used for the examination
of the assignments. Since the jPlag is not
appropriate for the PHP language, it did not
reveal all matches.

In our opinion Anton’s user interface is also
more user-friendly than jPlag, also Anton’s
visualisation of the resulting matches provides
more information. JPlag highlights the matches
in the source codes, Anton also depicts text
similarities in the names of the functions and
a table of properties, which serve as additional
information for the user to support him in the
decision whether the matches are plagiarism or
not.

As for the comparison with other systems
mentioned earlier in this work — the widely pop-
ular system MOSS is available only as an online
service and a Linux script needs to be used
for the submission (MOSS, 2017). The Sherlock
system provides the results of the matches only
in plain text form. The system’s output is a
list of pairs of filenames and the percentage
value of their match. There is no information
about which particular part of the source code

Source Code Plagiarism Detection for PHP Language 115

caused the match (Sherlock, 2017). Also, the
system Checksims operates only in a command
line and does not have any graphical user
interface. According to available information
the system PDetect seems not being developed
after year 2005 (Moussiades and Vakali, 2005).
According to Krpec (2015) their solution from
Brno University of Technology does not always
provide accurate results. Hence none of these
systems fully meets the requirements and needs
of the educators at MENDELU.

In the current state Anton enables to work
with the files only separately, it does not
support any bulk operation, which might be
considered as a drawback for its use as a

6 CONCLUSIONS

tool for examination of school assignments.
Hence for now, the system has been tested
by several individual teachers. All teachers at
the department will be encouraged to use it as
soon as the batch upload of files is available.
The implementation of the batch operations
is currently under development and it should
be ready for usage during the spring semester
of the academic year 2017/2018 when the
course ASP is being taught and when the anti-
plagiarism system in this course will be needed.
Hence the teachers will be able use the system
comfortably for examination of the projects
without any limitations.

This paper deals with the system Anton and its
extension for detection of similarities in PHP
source codes. The principle of searching for
similarities in source codes in Anton is based
on tokenisation (using a PHP native tokenizer)
and the tokens are compared, using the Greedy
string tiling algorithm. The reported matches
are reported according to the setting of minimal
threshold (i.e. the minimum number of match-
ing tokens). For the purpose of this study, the
threshold was set to seven.

When used to evaluate samples in the PHP
language, Anton provides more accurate results
then jPlag. The results are depicted in the
graphical form where matches are highlighted
and also further information on the source
code’s similarities are provided to the user.

7 ACKNOWLEDGEMENTS

The topics for future development include
enabling bulk operations and accuracy improve-
ment of the thresholds so the system so as to
reduce false-positive results.

Anton’s specialization on PHP language can
be seen as a limitation, but other languages can
be added easily by addition of the appropriate
tokenizers. One main goal of future develop-
ment is to recognize similarities across pro-
gramming languages. When it becomes possible
to convert tokens from different programming
languages into comparable tokens, we will then
gain the significant advantage of being able to
discover source codes which were rewritten from
one programming language to another.

This paper was supported by Internal Grant
Agency of Faculty of Business and Economics
of Mendel University in Brno (project code:
PEF_TP_2016001).

The paper is based on results of bachelor
thesis of Richard Vsiansky (2017).

116

Richard Vsiansky, Dita Dlabolova and Tomé&s Foltynek

8 REFERENCES

ARWIN, C. and TAHAGHOGHI, S. M. M. 2006. Plagiarism
Detection across Programming Languages. In:
Proceedings of the 29th Australasian Computer
Science Conference, vol. 48, pp. 277—286.

BRETAG, T. 2015. Handbook of Academic Integrity.
USA: Springer. ISBN 978-981-287-097-1.

CroucH, P. 2000. Plagiarism in Natural and
Programming Languages: an Overview of Current
Tools and Technologies. Sheffield: Department of
Computer Science, University of Sheffield. [online].
Available at: http://ir.shef.ac.uk/cloughie/
papers/plagiarism2000.pdf. [Accessed 2017,
October 31].

FLORES, E., BARRON-CEDENO, A., Rosso, P. and
MORENO, L. 2011. Towards the Detection of
Cross-Language Source Code Reuse. Proceedings
of 16th International Conference on Applications
of Natural Language to Information Systems,
NLDB2011. Springer. ISBN 978-3-642-22326-6.

FLORYCEK, J. 2015. Optimalizace antiplagidtorského
resent na Mendelové univerzité v Brné. Brno:
Mendelova univerzita v Brné. [online]. Available at:
http://theses.cz/id/vgizl0/zaverecnaprace.
pdf. [Accessed 2017, October 31].

FoLTYNEK, T., PROCHAZKA, T. and RYBICKA, J. 2009.
Plagiarism Detection System at Mendel University
in Brno, Czech Republic. [DVD-ROM]. In IVKI
2009. Inovdcia vyskumu katedier informatiky,
pp. 50-53. ISBN 978-80-8094-579-4.

Checksims. 2015. GitHub — Checksims. [online].
Available at: https://github.com/Checksims/
checksims. [Accessed 2017, December 20].

HeonN, M. and MURVIHILL, D. 2015. Program
Stmilarity Detection with Checksims: A
Major Qualifying Project Report. [online].
Available at: https://web.wpi.edu/Pubs/
E-project/Available/E-project-043015-122310/
unrestricted/CheckSims.pdf. [Accessed 2017,
October 25].

JAMIESON, S. 2015. Is it Plagiarism or Patchwriting?
Toward a Nuanced Definition. In BRETAG, T. (ed.).
Handbook of Academic Integrity. USA: Springer.
ISBN 978-981-287-097-1.

JPlag. 2017. JPlag — Detecting Software Plagiarism.
[online]. Karlsruhe: Institute for Program
Structures and Data Organization. Available at:
https://jplag.ipd.kit.edu/. [Accessed 2017,
April 5].

Joy, M., Cosma, G., YAU, J.Y. and SINCLAIR,
J. 2011. Source Code Plagiarism — A Student
Perspective. [online]. IEEE Transactions
on Education, 54 (1), 125-132. DOL:
10.1109/TE.2010.2046664. Available at:
http://ieeexplore.ieece.org/document/5451097/.
[Accessed 2017, October 25].

Joy, M. and Luck, M. 1999. Plagiarism
in Programming Assignments. [online].
IEEE Transactions on FEducation,
42 (2), 129-133. Available at:
https://pdfs.semanticscholar.org/f161/
83ebb570fe9d485a5d36f415€94215cf9ad3. pdf.
[Accessed 2017, October 27].

Joy, M. 2014. Sherlock — Plagiarism
Detection Software. [online]. Available at:
http://www2.warwick.ac.uk/fac/sci/dcs/
research/ias/software/sherlock/. [Accessed
2017, October 27].

KrPEC, O. 2015. Plagiarism Recognizer in PHP Source
Code. Excel@FIT 2015 Conference Proceedings.
[online]. Available at: http://excel.fit.vutbr.
cz/submissions/2015/076/76.pdf. [Accessed 2017,
October 26].

LANCASTER, T. and CuLwiN, F. 2004. A Comparison
of Source Code Plagiarism Detection Engines.
[online]. Computer Science Education, 14 (2),
101-112. DOI: 10.1080/08993400412331363843.
Available at: http://www.tandfonline.com/doi/
abs/10.1080/08993400412331363843. [Accessed
2017, October 25].

LAUER, H. C. 2015. Extensions and Enhancements for
Checksims. In: Computer Science WPI. [online].
Available at: http://web.cs.wpi.edu/~lauer/
MQP/Checksims_MQP_topics.htm. [Accessed 2017,
October 25].

MirzA, O. and Joy, M. 2015. Style Analysis For Source
Code Plagiarism Detection. In: Plagiarism Across
FEurope and Beyond: Conference Proceedings. Brno:
MENDELU, pp. 53-61. ISBN 978-80-7509-267-0.

MOSS. 2017. A System for Detecting
Software Similarity [online]. Available at:
http://theory.stanford.edu/~aiken/moss.
[Accessed 2017, April 30].

MoOUSSIADES, L. and VAKALI, A. 2005. PDetect:
A Clustering Approach for Detecting
Plagiarism in Source Code Datasets.
[online]. The Computer Journal, 48 (6),
651-661. DOI: 10.1093/comjnl/bxh119.
Available at: http://academic.oup.
com/comjnl/article/48/6/651/358280/
PDetect-A-Clustering-Approach-for-Detecting.
[Accessed 2017, October 27].

Source Code Plagiarism Detection for PHP Language

Mozcovoy, M., FREDRIKSSON, K., WHITE, D., Joy, M.
and SUTINEN, E. 2005. Fast Plagiarism Detection
System. In CoNSENs, M. and NAVARRO, G.
(eds.). String Processing and Information
Retrieval. [online]. Springer, pp. 267-270.

DOI: 10.1007/11575832_30. Available at:
http://link.springer.com/10.1007/11575832_30.
[Accessed 2017, October 27].

MurAO, H. and OHNO, A. 2011. A Two-step In-class
Source Code Plagiarism Detection Method Utilizing
Improved CM Algorithm and SIM. International
Journal of Innovative Computing, Information
and Control, 7 (8), 4729-4739. Available at:
http://wuw.ijicic.org/ijicic-10-05012.pdf.
[Accessed 2017, October 31].

PARKER, A. and HAMBLEN, J. O. 1989. Computer
Algorithms for Plagiarism Detection. [online].
IEEE Transactions on Education, 32 (2),
94-99. DOI: 10.1109/13.28038. Available at:
http://ieeexplore.ieee.org/document/28038/.
[Accessed 2017, October 31].

PRECHELT, L., MALPOHL, G. and PHILIPPSEN, M.
2000. JPlag: Finding Plagiarisms Among a Set
of Programs. Karlsruhe: Fakultat fur Informatik
Universit at Karlsruhe. [online]. Available at:
http://page.mi.fu-berlin.de/prechelt/Biblio/
jplagTR.pdf. [Accessed 2017, October 31].

AUTHOR’S ADDRESS

SCHLEIMER, S., WILKERSON, D. S. and AIKEN, A.
2003. Winnowing. In: Proceedings of the 2003
ACM SIGMOD International Conference on
Management of Data — SIGMOD 08 New York,
p. 76. DOI: 10.1145/872757.872770. [online].
Available at: http://portal.acm.org/citation.
cfm?doid=872757.872770. [Accessed 2017, October
25].

SHAO, Z. 2015. Compilers and Interpreters. New
Haven: Yale University. [online]. Available at:
http://flint.cs.yale.edu/cs421/lectureNotes/
c02.pdf. [Accessed 2016, November 17].

Sherlock. 2017. The Sherlock Plagiarism
Detector. [online]. Available at:
http://www.cs.usyd.edu.au/~scilect/sherlock/.
[Accessed 2017, October 27].

The PHP Group. 2017. PHP — Tokenizer. [online].
Available at: http://php.net/manual/en/book.
tokenizer.php. [Accessed 2017, May 14].

VSIANSKY, R. 2017. Rozpozndvdni podobnosti zdrojovijch
kédu v systému Anton. Brno: MENDELU.

VSIANSKY, R. and DLABOLOVA, D. 2016. Deployment

and Improvements of System Anton. In: PEFnet
2016. Brno: MENDELU.

Richard Vsiansky, Department of Informatics, Faculty of Business and Economics, Mendel
University in Brno, Zemédélska 1, 613 00 Brno, Czech Republic, e-mail: xvsiansk@mendelu.cz

Dita Dlabolové, Department of Informatics, Faculty of Business and Economics, Mendel
University in Brno, Zemédeélska 1, 613 00 Brno, Czech Republic, e-mail:

dita.dlabolova@mendelu.cz

Tomas Foltynek, Department of Informatics, Faculty of Business and Economics, Mendel
University in Brno, Zemédélska 1, 613 00 Brno, Czech Republic, e-mail:

tomas.foltynek@mendelu.cz

